Plasma membrane targeting of SNAP-25 increases its local concentration and is necessary for SNARE complex formation and regulated exocytosis.

نویسندگان

  • Darshan K Koticha
  • Ellen E McCarthy
  • Giulia Baldini
چکیده

SNAP-25 is an integral protein of the plasma membrane involved in neurotransmission and hormone secretion. The cysteine-rich domain of SNAP-25 is essential for membrane binding and plasma-membrane targeting. However, this domain is not required for SNARE complex formation and fusion of membranes in vitro. In this paper, we describe an 'intact-cell'-based system designed to compare the effect of similar amounts of membrane-bound and soluble SNAP-25 proteins on regulated exocytosis. In transfected neuroblastoma cells, Botulinum neurotoxin E (BoNT/E), a protease that cleaves SNAP-25, blocks regulated release of hormone. However, hormone release is rescued by expressing a wild-type SNAP-25 protein resistant to the toxin. BoNT/E-resistant SNAP-25 proteins lacking the cysteine-rich domain or with all the cysteines substituted by alanines do not form SNARE complexes or rescue regulated exocytosis when expressed at the same level as membrane-bound SNAP-25, which is approximately four-fold higher than the endogenous protein. We conclude that the cysteine-rich domain of SNAP-25 is essential for Ca(2+)-dependent hormone release because, by targeting SNAP-25 to the plasma membrane, it increases its local concentration, leading to the formation of enough SNARE complexes to support exocytosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High affinity interaction of syntaxin and SNAP-25 on the plasma membrane is abolished by botulinum toxin E.

The release of hormones and neurotransmitters requires the fusion of cargo-containing vesicles with the plasma membrane. This process of exocytosis relies on three SNARE proteins, namely syntaxin and SNAP-25 on the target plasma membrane and synaptobrevin on the vesicular membrane. In this study we examined the molecular assembly pathway that leads to formation of the fusogenic SNARE complex. W...

متن کامل

Snapin mediates insulin secretory granule docking, but not trans-SNARE complex formation.

Secretory granule exocytosis is a tightly regulated process requiring granule targeting, tethering, priming, and membrane fusion. At the heart of this process is the SNARE complex, which drives fusion through a coiled-coil zippering effect mediated by the granule v-SNARE protein, VAMP2, and the plasma membrane t-SNAREs, SNAP-25 and syntaxin-1A. Here we demonstrate that in pancreatic β-cells the...

متن کامل

Cysteine residues of SNAP-25 are required for SNARE disassembly and exocytosis, but not for membrane targeting.

The release of neurotransmitter at a synapse occurs via the regulated fusion of synaptic vesicles with the plasma membrane. The fusion of the two lipid bilayers is mediated by a protein complex that includes the plasma membrane target soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein (SNAP) receptors (t-SNAREs), syntaxin 1A and synaptosome-associated protein of 25 kDa (...

متن کامل

Munc18-Bound Syntaxin Readily Forms SNARE Complexes with Synaptobrevin in Native Plasma Membranes

Munc18-1, a protein essential for regulated exocytosis in neurons and neuroendocrine cells, belongs to the family of Sec1/Munc18-like (SM) proteins. In vitro, Munc18-1 forms a tight complex with the SNARE syntaxin 1, in which syntaxin is stabilized in a closed conformation. Since closed syntaxin is unable to interact with its partner SNAREs SNAP-25 and synaptobrevin as required for membrane fus...

متن کامل

Role of SNAP-23 in trafficking of H+-ATPase in cultured inner medullary collecting duct cells.

The trafficking of H+-ATPase vesicles to the apical membrane of inner medullary collecting duct (IMCD) cells utilizes a mechanism similar to that described in neurosecretory cells involving soluble N-ethylmaleimide-sensitive factor attachment protein target receptor (SNARE) proteins. Regulated exocytosis of these vesicles is associated with the formation of SNARE complexes. Clostridial neurotox...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 115 Pt 16  شماره 

صفحات  -

تاریخ انتشار 2002